Rápido Descenso de Nivel de varias etapas

Cuando el nivel del agua en una presa se desborda, la fuerza estabilizadora es eliminada debido al peso del agua. Si el material de presa tiene una permeabilidad baja y el nivel del agua cae rápidamente, entonces el exceso de la presión de poros será más lento de disipar. Esto causa estabilidad reducida en el talud. Este tutorial describe cómo utilizar el *Slide* para modelar el rápido descenso de nivel y examinar el efecto en la estabilidad de la presa y el factor de seguridad.

Se puede encontrar el producto terminado de este tutorial en el archivo de datos **Tutorial 17 Rápido Descenso de nivel.slim** ("**Tutorial 17 Rapid Drawdown.slim**") Se pueden acceder a todos los archivos del tutorial con el *Slide* 6.0, al seleccionar Archivo> Carpetas Recientes> Carpeta de Tutoriales ("File > Recent Folders > Tutorials Folder") desde el menú principal del *Slide*.

Temas desarrollados

- Rápido Descenso de nivel: Duncan, Wright y Wong
- · Rápido Descenso de nivel: Lowe y Karafiath
- Rápido Descenso de nivel: Army Corps of Engineers ("Cuerpo de Ingenieros de la Armada")

<u>Geometría</u>

Reservorio Completo Estado Estacionario ("Full Reservoir, Steady State")

El modelo se basa en el análisis de Presa Pilarcitos, tal como se describe en Duncan, Wright y Wong (1990). La presa falló debido al rápido descenso del nivel del agua en noviembre, 1969.

Inicie el programa Modelo ("Model") del Slide.

Parámetros del Proyecto ("Project Settings")

Abra la ventana de diálogo **Parámetros del Proyecto** ("**Project Settings**") desde el menú Análisis ("Analysis"). Configure las Unidades de Tensión ("Stress Units") a Imperial. No es importante el tiempo de las unidades, ya que no estamos haciendo un análisis de agua subterránea de elemento finito transitorio. Asegúrese de que la Dirección de Falla ("Failure Direction")= Derecha ("Right") a Izquierda ("Left"). La ventana de diálogo debe lucir como sigue:

Project Settings		? ×
General Methods Groundwater Transient Statistics Random Numbers Design Standard Advanced Project Summary	General Units of Measurement Stress Units: Imperial Time Units: Days Permeability Units: feet/second	•
	Failure Direction	Data Output ③ Standard ⑦ Maximum
	Maximum Properties Materials: 20 🛫 Support: 20 🛫	
Defaults		OK Cancel

Haga clic en OK para cerrar la ventana de diálogo Parámetros del Proyecto ("Project Settings").

Límites ("Boundaries")

Primero añada un límite externo. Seleccione la opción **Añadir Límite Externo** ("**Add External Boundary**") en el menú **Límites** ("**Boundaries**") e ingrese las siguientes coordenadas:

0,0 260,0 260,78 205,78 145, 58

c (para cerrar el límite)

Presione Ingresar ("Enter") para finalizar la entrada de puntos. Esto define el límite externo, el cual delimita la presa. Se asume que la presa debe asentarse sobre un material de alta resistencia que no esté incluido en el modelo. La presa debe lucir como sigue:

Propiedades del Material ("Material Properties")

Seleccione **Definir Materiales** ("**Define Materials**") desde el menú **Propiedades** ("Properties"). La presa es un terraplén lleno de tierra laminada con las siguientes propiedades de material drenado.

 $\gamma = 135 \text{ pcf}$ c' = 0 ksf $\phi' = 45^{\circ}.$

Entonces, ingrese las propiedades del material para Material 1, tal como se muestra.

Define Material Properties	? ×		
Material 1	Material 1		
Material 3 Material 4	Name: Material 1 Colour: 🗨 Hatch: 🔽		
Material 5	Unit Weight 135 Ib/ft3 Saturated U.W. 120 Ib/ft3		
Material 7 Material 8 Material 9	Strength Type: Mohr-Coulomb \checkmark $\tau = c' + \sigma'_n \tan \phi'$		
Material 10 Material 11	Strength Parameters		
Material 12 Material 13 Material 14	Cohesion: 0 lb/tt2 Phi: 45 degrees		
Material 15 Material 16			
Material 17 Material 18 Material 19	Water Parameters		
Material 20	Water Surface: None Ru Value: 0		
Сору То	Show only properties used in model OK Cancel		

Haga clic en OK para cerrar la ventana de diálogo.

Napa Freática ("Water Table")

2

Para añadir la napa freática, seleccione Límites \rightarrow Añadir Napa Freática ("Boundaries \rightarrow Add Water Table"). Ingrese las siguientes coordenadas:

0,72

260 , 72

Presione Ingresar ("Enter") para finalizar la entrada de coordenadas. Cuando aparezca la ventana de diálogo Asignar Napa Freática a Materiales ("Assign Water Table to Materials"), asegúrese de que se seleccione el Material 1 y haga clic en OK. El modelo debe lucir así:

Superficies de falla ("Slip Surfaces")

Seleccione **Superficies** \rightarrow **Cuadrículas Autogeneradas** ("**Surfaces** \rightarrow **Auto Grid**") para generar automáticamente una cuadrícula de centros de falla. Deje el espaciado de cuadrícula de falla como 20 en la dirección X y 20 en la dirección Y.

Grid Spacing	<u> </u>
Number of Intervals in ≥	≤direction 20
Number of Intervals in <u>}</u>	<u>r'</u> direction 20
ОК	Cancel

Haga clic en OK en la ventana de diálogo y el modelo lucirá como esto:

Ahora, usted está listo para computar los resultados para todo el reservorio.

Computar ("Compute")

Guarde el modelo, utilice la opción Guardar Como ("Save As") en el menú Archivo ("File"). Elija Computar ("Compute") desde el menú de Análisis ("Analysis") para llevar a cabo el análisis y elija Interpretar ("Interpret") desde el menú de Análisis ("Analysis") para visualizar los resultados.

Interpretar ("Interpret")

El programa Interpretar ("Interpret") muestra los resultados del análisis Simplificado Bishop por defecto. Usted puede ver que el factor de seguridad es 2.5 y que esto es para una superficie de falla muy pequeña en el pie. (Usted puede prevenir que el Slide genere estas superficies erróneas poco profundas, si se dirige a Superficies \rightarrow Opciones de Superficie ("Surfaces \rightarrow Surface Options") y selecciona una profundidad mínima mayor que 0. Vea los archivos de ayuda para más detalles). Básicamente, se puede considerar a este modelo como estable.

Modelo con Rápido Descenso de nivel

Regrese al programa Modelo ("Model") del *Slide*. Ahora, simularemos el rápido descenso de la napa freática. Primero, tenemos que habilitar el análisis rápido descenso de nivel.

Abra la ventana de diálogo **Parámetros del Proyecto** ("**Project Settings**") desde el menú **Análisis** ("**Analysis**"). En el lado izquierdo, haga clic en **Agua Subterránea** ("**Groundwater**"). Haga clic en la casilla de selección **Avanzado** ("Advanced") y seleccione **Método Rápido Descenso de Nivel** ("**Rapid Drawdown Method**"). Observaremos los tres métodos diferentes en este tutorial, pero primero examinaremos el método Duncan, Wright y Wong; por ende, elija este método en el menú desplegable.

Project Settings	2 ×
General Methods Groundwater Transient Statistics Bandom Numbers Design Standard Advanced Project Summary	Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.400 lb/ft3 ✓ Advanced ⑦ Transient Groundwater ⑧ Excess Pore Pressure ⑧ Rapid Drawdown Method Duncan, Wright Wong 3 Stage (1990)
Defaults	OK Cancel

Haga clic en OK para cerrar la ventana de diálogo.

Ahora, usted verá que la napa freática aparece como una línea punteada y se registra con la palabra "Inicial". Ahora, necesitamos añadir la posición final de la napa freática. Diríjase a Límites \rightarrow Añadir Línea de Descenso de Niveles ("Boundaries \rightarrow Add Drawdown Line"). Ingrese las siguientes coordenadas:

0, 37

260, 37

Presione Ingresar ("Enter") para dejar de ingresar puntos de entrada. El modelo lucirá como sigue:

Hay algo más que debe realizarse antes de ejecutar el análisis de descenso de niveles, y ello es definir las propiedades del material no drenado.

Seleccione **Definir Materiales** ("**Define Materials**") desde el menú **Propiedades** ("**Properties**"). Bajo los Parámetros de Rápido Descenso de Nivel ("Rapid Drawdown Parameters") revise la casilla para Comportamiento No Drenado ("Undrained Behaviour"). Haga clic en el botón Definir Resistencia ("Define Strength"). Seleccione la opción la Tensión Total de Envoltura Lineal R ('Total Stress R Envelope – Linear"). Ingrese una Cr de 60 psf y un ángulo de 23°.

Material 1 Material 2 Material 3 Material 4 Material 5 Material 6 Material 7 Material 8 Material 9 Material 9 Material 10 Material 11 Material 12 Material 13 Material 14 Material 13 Material 13 Material 14 Material 13 Material 14 Material 15 Material 16 Material 17 Material 18 Material 19 Material 11 Material 13 Material 14 Material 15 Material 18 Material 19 Material 19 Material 19 Material 10 Material 11 Material 12 Material 13 Material 14 Material 15 Material 18 Material 19 Material 19 Material 19 Material 10 M	Define Material Properties	2 X
Material 3 Material 4 Material 5 Material 6 Material 7 Material 8 Material 10 Material 11 Material 12 Material 13 Material 14 Material 15 Material 16 Material 17 Material 18 Material 20 Kc = 1 Envelope - Non-Linear Parameters (R envelope - Linear) CR: 60 Material 19 Material 20 OK Cancel PhiR: 23 degrees VIndrained Behaviour Define Strength	Material 1 Material 2 Material 2	Material 1
Material 3 Material 7 Material 7 Material 8 Material 9 Material 9 Material 9 Material 11 Material 12 Material 13 Material 13 Material 16 Material 16 Material 17 Material 18 Material 19 Material 20 Material 20	Material 3 Material 4 Multi	-Stage Rapid Drawdown Parameters
Rapid Drawdown Parameters Undrained Behaviour Define Strength	 Material 6 Material 7 Material 8 Material 9 Material 10 Material 11 Material 12 Material 13 Material 13 Material 14 Material 15 Material 16 Material 17 Material 18 Material 18 Material 19 Material 20 	arear Strength Envelope Type Image: Total Stress R Envelope - Linear Kc = 1 Envelope - Linear Kc = 1 Envelope - Non-Linear Kc = 1 Envelope - Non-Linear Kc = 1 Envelope - Linear) CR: 60 Ib/ft2 PhiR: 20 Ib/ft2 PhiR: 21 Ib/ft2 OK Cancel
		Rapid Drawdown Parameters

Haga clic en OK para cerrar la ventana de diálogo Definir Propiedades del Material ("Define Material Properties").

La tensión total de envoltura R es una manera de representar la Resistencia no drenada del material. También es posible especificar un valor de Kc=1 envoltura. Para obtener más detalles sobre el significado de estas envolturas y sus relaciones con las otras, observe la siguiente información:

Para desarrollar el análisis de equilibrio límite, el método Army Corps requiere la envoltura R. Si $K_c = 1$ envoltura es ingresada en cambio, entonces esta se convierte al utilizar las siguientes ecuaciones arriba descritas. La envoltura R se combina con la envoltura de tensión efectiva para evitar emplear elevadas resistencias al corte que resulten presiones negativas de poros. A continuación se muestra el compuesto de poros.

Otros métodos

El método de Lowe y Karafiath (1960) y Duncan Wright y Wong (1990) requieren que $K_c = 1$ envoltura.

Si se ingresa en cambio la envoltura R, esta es convertida, utilizando las ecuaciones anteriores.

 $K_c = 1$ se refiere a un estado consolidado de forma isotrópica.

Para obtener que la envoltura sea de un material consolidado de forma isotrópica (donde $K_c \neq 1$) se debe graficar en el mismo gráfico la envoltura de falla drenada. Se asume que la envoltura drenada representa la resistencia al corte no drenado del suelo en un K_c máximo permitido (esto es, el valor K_c que resulta en falla durante la consolidación). La envoltura que se utilizará en el análisis posteriormente será interpolada entre los dos, utilizando el valor K_c para cada corte en el análisis de equilibrio límite del talud previo al descenso de nivel.

Una vez que se haya definido la envoltura, se lleva a cabo el análisis de equilibrio límite para la segunda etapa (después del descenso de nivel), al utilizar las nuevas resistencias al corte. En el método Duncan, Wright y Wong (1990) también se lleva a cabo una tercera etapa de computación. En esta etapa, se calcula la tensión efectiva en la parte inferior de cada corte (después del descenso de nivel) y si la resistencia al corte drenado es menor que la resistencia al corte no drenado, entonces se utiliza en cambio la resistencia al corte drenado.

Computar ("Compute")

Guarde el modelo, utilice la opción **Guardar** ("Save") en el menú **Archivo** ("**File**").

Elija **Computar** ("**Compute**") desde el menú **Análisis** ("**Analysis**") para llevar a cabo el análisis y elija **Intepretar** ("**Interpret**") desde el menú **Análisis** ("**Analysis**") para visualizar los resultados.

Interpretar ("Interpret")

Como antes, el programa Interpretar ("Interpret") muestra los resultados del análisis Bishop Simplificado ("Bishop Simplified").

Usted puede observar que el factor de seguridad es de ahora 1 aproximadamente, correspondiendo al talud de falla, tal como se observa actualmente en la Presa Pilarcitos.

Método Lowe y Karafiath

۲ł

55

Regrese al programa Modelo ("Model") del *Slide*. Abra los **Parámetros del Proyecto** ("**Project Settings**") desde el menú **Análisis** ("**Analysis**"). Haga clic en el enlace de la parte izquierda de Agua Subterránea ("Groundwater"). Al costado del Método de Rápido Descenso de Nivel ("Rapid Drawdown Method"), seleccione Lowe y Karafiath (1960). El método Lowe y Karafiath es en esencia el mismo que el método Duncan, Wright y Wong. La diferencia es que el método Duncan, Wright y Wong se lleva a cabo en la tercera etapa del cálculo en la cual se revisa si la tensión efectiva después del descenso de nivel produce una resistencia drenada que sea menor que la resistencia no drenada. Si se encuentran cualquiera de los cortes como sucede en este caso, entonces la resistencia drenada es sustituida y se vuelve a ejecutar el análisis.

Project Settings	? <mark>×</mark>
General Methods Groundwater Transient Statistics Random Numbers Design Standard Advanced Project Summary	Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.400 lb/ft3 Image: Advanced Image: Transient Groundwater Image: Excess Pore Pressure Image: Excess Pore Pressure Image: Rapid Drawdown Method Lowe and Karafiath (1960)
Defaults	OK Cancel

Haga clic en OK para cerrar la ventana de diálogo.

Computar ("Compute")

Guarde el modelo, utilice la opción **Guardar Como** ("**Save as**") en el menú Archivo ("File"). Usted puede elegir un nombre diferente, para que pueda comparar los resultados de este modelo con los resultados del modelo Duncan, Wright y Wong. Elija Computar ("Computar") desde el menú de Análisis ("Análisis") para llevar a cabo el análisis y elija Interpretar ("Interpret") desde el menú de **Análisis** ("**Analysis**") para visualizar los resultados.

Interpretar ("Interpret")

Usted podrá ver que el factor de seguridad para el método Lowe y Karafiath es 1.052. Este es ligeramente más elevado que el valor de 1.047 obtenido con el método Duncan, Wright y Wong. Esto indica que algunos de los cortes deben haber tenido resistencias menores de drenaje que las resistencias de no drenaje. Por lo tanto, la tercera etapa de análisis en el método Duncan, Wright y Wong resultó en un factor de seguridad ligeramente menor.

Método Army Corps

1

Regrese al programa Modelo ("Model") del *Slide*. Abra los **Parámetros del Proyecto** ("**Project Settings**") desde el menú **Análisis** ("**Analysis**"). Haga clic en el enlace del lado izquierdo de Agua Subterránea ("Groundwater"). Al costado del Método de Descenso de Nivel Rápido ("rapid Drawdown Method"), seleccione Army Corps. Eng. 2 Etapa (1970).

Project Settings		? ×
General Methods Groundwater Transient Statistics Random Numbers Design Standard Advanced Project Summary	Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 62.400 Advanced Transient Groundwater Excess Pore Pressure Rapid Drawdown Method	-
Defaults	OK	Cancel

Tal como se describió anteriormente, el método Army Corps utiliza una cubierta de falla diferente a la de otros métodos. Sin embargo, no necesitamos cambiar las propiedades del material, ya que el *Slide* desarrolla de forma automática cualquier conversión solicitada.

Computar ("Compute")

Guarde el modelo, utilice la opción Guardar Como ("Save as") en el menú Archivo ("File"). Elija Computar ("Computar") desde el menú Análisis ("Analysis") para llevar a cabo el análisis y elija Interpret ("Interpret") desde el menú Análisis ("Analysis") para visualizar los resultados.

Interpretar ("Interpret")

Para el método Army Corps, el factor de seguridad es de 0.824, significativamente más bajo que otros métodos. Esto concuerda con la creencia general que el método Army Corps proporciona los resultados que son muy conservadores.

Esto concluye este tutorial.

Ejercicio Adicional

En lugar de utilizar la envoltura R, trate de ingresar en cambio un K_c = 1 envoltura. Si usted especifica que d = 64 lb/ft2 y ψ = 24.4°, luego usted debe obtener los mismos resultados.

Referencias

Corps of Engineers, 1970. Engineering and Design – Stability of Earth and Rock Fill Dams, Engineering Manual, EM 1110-2-1902. Department of the U.S. Army, Corps of Engineers, Office of the Chief of Engineers (Departamento de los Estados Unidos, Cuerpo de Ingenieros del Ejercito, Oficina del Jefe de Ingenieros).

Duncan, J.M., Wright, S.G. and Wong, K.A., 1990. Slope Stability during Rapid Drawdown, Proceedings of H. Bolton Seed Memorial Symposium. Vol. 2.

Lowe, J and Karafiath, L., 1960. Stability of Earth Dams Upon Drawdown, Proceedings of 1st PanAm Conference on Soil Mechanic and Foundation Engineering. Mexico City, Vol 2.